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Transverse plasma waves and their instability

By F. D. KAHN

Astronomy Department, University of Manchester
(Received 9 May 1962)

Linearized equations are derived for disturbances in an infinite plasma without
an imposed magnetic field. It is shown that besides the electrostatic, or longitu-
dinal, waves which are usually considered, there can also exist electromagnetic,
or transverse, waves. The two sets of waves are generally coupled, but one can
nevertheless classify the waves as either mainly longitudinal or mainly trans-
verse. It turns out that a plasma which is stable to longitudinal waves will be
unstable to transverse waves unless the velocity distribution of its particles
satisfies some rather stringent conditions. In a practical case these conditions
would require the distribution to be isotropic.

1. Introduction

Plasma waves are in general not useful for the transmission of signals, but they
are interesting because, for a wide variety of velocity distributions among the
charged particles, they may exist with exponentially-growing amplitudes. Their
occurrence then leads to a re-arrangement of particle velocities, presumably until
a stable distribution is reached. Unstable waves thus tend to perform those
functions which are fulfilled by molecular collisions in an ordinary gas.

In the past, attention has been paid mainly to electrostatic plasma waves. The
criterion for their stability has been given by Penrose (1960), and their tendency
to redistribute the particle velocities has been demonstrated by Buneman (1959).
When an electrostatic wave is unstable its amplification rate is usually of the
order of the plasma frequency, generally thefastest possible rate for any dynamical
process in a plasma.

There is another form of plasma wave, in which the forces on the particles are
electromagnetic, rather than electrostatic. This type of wave has not been so
much discussed in the literature. However, the fact of its existence is implicit in
some well-known equations for plasma waves, for example in equation (166) of
chapter viin Plasma Physics (Chandrasekhar 1960).

Weibel (1959) was the first to show that such waves can be unstable; the
physical mechanism of the instability was then described by Fried (1959). Later
Harris (undated MS.) discussed some further possibilities. All these authors
treat only cases in which the undisturbed velocity distribution of the plasma
particles has the form C exp { —u2/o% — (v® + w? [0} }. This restriction is not made
in the present paper.

The waves in question are not be confused with the familiar fast electromagnetic
waves, whose phase velocities are of the order of the speed of light, and which are
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simply a form of, say, radio waves, modified because the propagation occurs in a
plasma rather than in a vacuum. The plasma waves to be discussed here have
smaller phase velocities, which are usually complex and of the order of o, the
r.m.s. velocity dispersion of the charged particles which they affect. When such
waves are unstable, the amplification rate is of the order o/c times the plasma
frequency, where ¢ is the speed of light. Such instabilities are thus much less
violent than electrostatic ones; if both types occur in a plasma, the latter are
usually the more important. But much less stringent conditions are needed for
the existence of an electromagnetic instability than for the existence of an
electrostatic one. In fact, as Noerdlinger (1961) has shown, the conditions for a
plasma to be electrostatically unstable are such as to prevent this instability
from occurring in a number of rather interesting physical situations, for example
in the case of a shock wave in the interplanetary medium. Here, and in many
other cases, the transverse instabilities may become important.

2. The equations of motion

We shall treat only the case of an electron plasma without an imposed magnetic
field. There is assumed to be present a smoothed-out background charge which
takes no part in the motion, and merely serves to ensure overall space-charge
neutrality. It is enough to allow for only one mobile species since, in a linear
theory, a particle of charge Ze and mass m/u is equivalent to x#Z? particles of
charge e and mass m.

In the undisturbed state let there be a uniform density of N particles per unit
volume, each of charge e and mass m, and let fy(u, v, w) du dv dw be the proportion
of particles whose velocitieslie in the range (u, u +du; v,v + dv; w,w + dw). Letthe
density of particles in this velocity range change to N{f,+ fexp[ik(x— af)]}in the
perturbed state. In general we take a to be a complex phase velocity, and kto be a
positive real wave-number. The linearized form of the collision-free Boltzmann
equation is then

tk(u—a)f+(e/m)(E+cluaH).V, f,=0, 1)
where, for brevity,
u = (u,v,w) and V, = (0/ou,d/ov,0/ow).

The electric and magnetic disturbance fields E and H can be expressed in terms

of the potentials ¢ and A by the usual relations

E=—-Vgp—clA, H=VrA. (2)
The potentials are given in terms of the perturbed particle distribution by
V3¢ — 2§ = — dnNeexp {ik(z—at)} [f(a)du,

or (1 —a?(c?) ¢ = k¥ = 4nNe[f(u)du, (3)
and V2A —¢2A = — (477Nec) exp {ik(x — at)} fuf(u) du

or k(1 —a?/c®) A = (477Ne/c).]'uf(u) du. (4)
Thefactor exp {ik(x — at)} has been omitted in (3) and (4), and will be dropped from
now on. As usual c—qu +V.A =0

or ac”lp = A4, (3)
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where A = (4,,4,,4,). The electric and magnetic fields can therefore be con-
veniently expressed in terms of ¢ = (1—a?/c?) ¢, A, and 4,. We have that

E, = —ik(¢p—ac14,) = —ik(1 —a?/c®) ¢ = — ik,
E, = (ikajc)A,, E,= (ikajc)4,, (6)
H, =0, H,=—1kd, H,=:ikA,
In terms of the potentials, the linearized Boltzmann equation becomes
0
—af+ 5| —vrt s 04, +ud)| T2 a4, Biad)-o o

Three linear relations between yr, 4, and 4, can be obtained from (3), (4) and (7)
To find the first, divide (7) by % — a, and integrate over all velocities. Then, by (3),

Hffdudvdw = k¥)/4nNe;
further, for any physically admissible velocity distribution,

JIIZ. Feduad = [ttt =, e

and similarly for of,/ow. Finally, we define functions

L. fﬂm 2y af"d o dw, 8)

o U—a

oou_'

(@) =fff_muv2agf°dudvdw,

and so on. Thus we find, from (7), that

o/ e (1, I, _
——1 ¢+ﬁ(EAU+?AZ) =0

47rNe m'!
or (kz_ QzIl) ¢+ (QZ/G) (Iu Ay+Iw Az) =0, (9)

where Q% = 47Ne?/m
Two further relations can be found on multiplying (7) by v/(« — ) and w/(u — a),

respectively, and on integration over all velocities. In this case we have from
(4) that

so that, for example, I (a) = fff 1 °d dvdw,

fffw of (u, v, w) dudv dw = (ck?/4mNe) (1—a2/c?) 4,,
3 (10)
e f f f wf (u, 0, w)dudvdw = (ck?/4mNe) (1 —a?/c?) 4,.

There also turn up integrals of the form

fff_w ) adeudv dw = ffuw [0f ]2 du dw — ff fmfodudvdw. (11)

21-2
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The first integral on the right-hand side vanishes here; the second equals unity,
by the definition of f,. Similarly,

fff w dudvdw = —1,

but B w%dudvdw = i a(‘fow)dudvdw =0,
—w OV o OV

and similarly for the integral of v of;/0w. Thus, from (7),

ck? 2/02)

47rNe a/cA—ﬁI¢+ IA+I Az)+ A—O

or _(Qz/c) Iv¢.+[k2(1—a2/02)+k(2)(1w+ 1)]Ay+k%vaA (12)
and similarly

—(Q¥c) I, + k31, A, + [K*(1 — a?[c?) + k§(L,,+ 1)] 4, = 0. (13)

In (12) and (13) we have written k, = /c. When ¢, 4, and 4, are eliminated
from equations (9), (12) and (13), there remains the dispersion relation:

k2 — Q21 (Q2fe) I, Q) I,
—(Q2fe) I, k(1 —a?/c?)+ kYL, +1) kL, =0. (14)
—(Q2)e) I, KL, k(1 — a2[c2) + k(L + 1) |

An unstable plasma wave existsif and only if a real value of ¥ may be found for
which the phase velocity a has a positive imaginary part.

3. A discussion of the dispersion relation
The I-functions in (14) all have the form

I(a) =Jw ! d—gdu, (15)

CwU—adu

and their properties are well known from the theory of electrostatic plasma waves.
Thus I(a) is clearly an analytic function of @ in the upper (or in the lower) half-
plane; if ¢'(ay) and ¢g"(ag) exist it is readily shown that

lim I{a) = I{ag) = J{ag) +iK(ag), (16)

where J(ag) = P p” la Zi (17)
o R

Klag) = mg'(ag), (18)

where ay, is real and where the limit is approached from the upper half-plane.
The symbol & denotes ¢ principal part of’. (A proof is given in appendix 1.)
Suppose now that the zero velocity is chosen equal to the mean velocity of the

particles, say. Let -
|7 otwdu=e;
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then, if the modulus of the phase velocity |a| much exceeds the half-width o of
the g-function,

I(a) = G x0O(1/a?);
in particular, then, I, = O(c?/a?), I; = O(1/a?) and so on. On the other hand, if
|| has the same order of magnitude as ¢, or if it is much smaller, I(a) = O(G/[0?),
and so I, = O(1), I, = O(1/¢?), and so on.

For waves with a phase velocity of order ¢, we have o < |a] in the plasmas
ordinarily encountered. When terms of the order of ¢?/c? are neglected, the
determinantin (14) reduces to its diagonal terms only; the dispersion relation then
becomes either

k2 = Q2a?,

which describes an electrostatic wave of very small wave-number, or
k2a?/c? = w?[c? = k24 k3, (19)

which is the familiar dispersion relation for electromagnetic radiation in a plasma.

But here we are interested, rather, in waves for which the modulus of the phase
velocity is small compared with the speed of light, and for which we can replace
by unity the factors (1 —a?/c?), occurring in the diagonal terms of (14); the
dispersion relation now becomes:

QL (), Qo) I,
§ - (Qz/c) Iv k2+k3(1 +Im:) k% va = 0. (20)
@I, KL,  BE+E(1+L,)

If I, and I, vanish, as may happen in cases with sufficient symmetry, then the
electrostatic and the electromagnetic parts of the disturbance uncouple; the
electrostatic part of the dispersion relation takes its usual form

k2— Q2 (a) = 0. (21)

The order of magnitude of %k for waves of interest is then given by

2 = 0(Q2/a?). (22)
The electromagnetic part of the dispersion relation becomes
B+ k3 (1+ 1) k31, _o
kI, 2+ k3(1+1,,) ’
that is (K2 + E§)? + 2(k2 + k) k3 (L + L) + k(Lo Lo — I3) = O,
or A2 4201, + 1) + (L L — 12,) = 0, (23)

where A = 1+ k2/k3. For interesting values of the phase velocity, 1, 1, and I,
are all of order unity; the corresponding values of k are then of order k, = Q/c,
and so are much smaller than the typical wave-number for an electrostatic wave
with a comparable phase velocity.

The terms I, and I,donot, in general, vanish, and introduce a coupling between
the electrostatic and electromagnetic modes. This affects the electrostatic modes
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only slightly. Here we expect k% to be of order Q2%/o2, much larger than
k% = Q2/c2. The dispersion relation (20) therefore reduces, approximately, to
kB2l (Q¥fe) I, (Qfc) 1,
—(Q2fc) I, k? 0 = 0; (24)
—(Q2fe) I, 0 k2
when £2 is set equal to Q2 in the second and third diagonal terms, as may be
done to the accuracy required, the relation (24) becomes

(k2 — Q2L) QA3 + (QYe?) Q2L (12 + 12) = 0
or k2= Q2L = — (Q¥e?) (124 I2). (25)

An additional term, of the order of 62/c? times the dominant terms, has now been
introduced. This correction is negligible. The usual form for the electrostatic
dispersion relation is thus completely adequate. But the coupling terms make an
important change in the dispersion relation for the electromagnetic mode. Here
the value of k2 for the interesting range of phase velocities will be of the order of
Q?/c2, which is small in comparison with Q2I, = 0(Q?/¢?). Thus the dispersion
relation is now, to a good enough approximation,

- QL (Q2/e) I, (Q%/e) L,
(@)L, R+BO+L)  KBL, | =0, (26)
L —(Q¥e) L, k21, K2+ K3(1 +1,,,)
or, after some re-arrangement and with A = 1+ k?/k2,
A2+ A Spo+ Iiw) + Foo Sioo = I = 0 (27)

In this relation we have written
‘Zm = Ivv'—Ivz/Ila ‘ﬂuw = va_Iv Iw/Il’ r’¢ww = Iww_I112:/Il' (28)

It is satisfactory that the dispersion relations (21) and (27) are both invariant,
in a Galilean sense, with respect to changes in velocity of the frame of reference.
Invariance with respect to changesin the #-componentis assured, since this enters
into the expressions for the I-functions only via the term u —a, which is a dif-
ference between two velocity components. To see that £ is invariant with
respect to a change in the v-component of velocity of the frame of reference,
substitute v’ = v+ V; then, using the obvious notation,

r,=1I,+2VL+ Ve, I,=I1+VIL and I;=1,
but I:HJ—I‘:JZ/Ii =Ivv_ITZJ/IIE"¢vv'
Similarly, .£,, and .%,,, may be shown to be invariant. It is also readily seen that

Tt Iy and L I FE both of them expressions which occur in (27), are

YT ww
invariant with respect to a rotation of the - and w-axes about the u-axis.

4. Sufficient conditions for the instability of a plasma

We now establish that electromagnetic instabilities do occur among a rather
wide class of velocity distributions. For the sake of simplicity we shall here
discuss only distributions with central symmetry, that is those for which a
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standard of rest can be found such that the undisturbed velocity distribution
function satisfies

Solu,v,w) = fo —u, —v, —w). (29)

The corresponding values of I;(a), I,(a), I,,(2) and I, (a) are then real and I (a)

> v * Tvw
and I (a) are pure imaginary when a is pure imaginary. To establish this, note

that
R N a1 _ v? ofy
tin = [[[* 2 amavan <[ [* 2 Seaudvau, o

in virtue of (29); thus I,(i5) = I (i3), and the required result follows. The proof
for the other I-functions is analogous.

Now equation (27), which is a form of the dispersion relation for transverse
waves, may be written

[A+ 3 I+ L) P = 2SIy — S + S (31)
For a centrally symmetrical distribution all coefficients in this equation are real
when a is pure imaginary, and, in particular, the right-hand side is necessarily
non-negative.

A sufficient condition for a transverse instability to occur is that a real positive
wave-number % shall correspond to some phase velocity with a positive imaginary
part. Since, by definition, A = 1+42/k% this means that there must exist a
phase velocity in the upper half-plane whose corresponding A is real and larger
than unity. By equation (31) this is so if £, ,+.7,, is real and less than —2
somewhere on the imaginary axis in the upper half-plane, and therefore, by
continuity, if

'fvv'i"fww <-2
for a = 0. Now o+ I = Lo+ Ly — (1/1y) (I%+Izw) (32)

All cases can be excluded from this discussion in which I; is real and positive
anywhere in the upper half-plane, since it follows from (21) that the corre-
sponding plasma will be electrostatically unstable, and that an electrostatic
instability will always be faster than an electromagnetic one. Therefore, in the
cages of interest here, both I, and I2 + I2, will be negative on a = 7, the imaginary
axis; it follows from (32) that on this axis

'fvv-i"fww < Im;+Iww’ (33)
with equality only if I, = I, = 0.

We shall now work out an expression for

L,(0) = L(0)+ L,,,(0) = f f f f ”22“’2%’@@ duw. (34)

The central symmetry of f, ensures that there is no divergence near » = 0. To save
confusion in the notation the suffix zero of the undisturbed velocity distribution
function is dropped from here on. In terms of spherical polar co-ordinates
(U, 0,¢) with the initial line § = 0 along the positive u-axis, we find that

m__sin%6 of sindof
0 2
) = f f f Ucosﬁ( GBU i 80) U2sin0dU df dep. (35)
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Put = cosf
2m
and | ) d = 203 (36)
0
© 1 oh  (1—pu?)20h
h 1,(0) = — AU —| U%d .
then 4(0) 27rf0 f_l [(1 72 U6U+ 7 8,u] U2dUdp (37)

Now expand & in terms of Legendre polynomials

MU ) = 3 han(U) Ponlit); (33)

the condition of central symmetry ensures that only polynomials of even order
occur in this expansion. On defining

Hy, = [ “ou®) 720, (39)
0
one can show (see appendix 2) that
I(0) = —8nHy+ X i, Hyy, (40)
n=1
where i, = (—1)» 1222+ (n 1)2/(2n) !

Now the normalization condition on the undisturbed distribution function is

such that © P (2n
1=f f f (U p,90) U2dU dpude
0 J-1Jo
1
= 271J~ Hydp = 4mH;
-1
hence L0)y= -2+ X ¢, H,,. (41)

n=1

To avoid a transverse instability certainly requires that 7,(0) > — 2. This will be

the case if the sum Y i, H,, on the right-hand side of (41) never becomes
n=1
negative.

The calculation so far has been confined to one particular direction for the
u-axis, that is to one direction of the wave-normal n. But if the plasma is to be
stable, I, > —2 whatever the direction chosen for n. Therefore we define a
fundamental initial line with respect to which a particular wave-vector points
into the direction (c,, f,). Let the velocity distribution function be written

o 2n

f) =fU,a,p)=¥(U)+ Z Ozﬁéﬁ‘)(U)S%‘)(a,ﬁ), (42)

n=1 m=

when expressed with respect to this fundamental initial line, where the S are
spherical harmonics. Again only harmonics of even order occur, owing to the
requirement for central symmetry. Expressed with respect to an initial line
which is parallel to a wave-normal n pointing into the direction (o, f,), the
distribution function may be expressed as

© 2n
fu)= T3 fEU) PE() 008 (m9 -+, ), (43)
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where the ¢, ,, are suitable constants. On equating harmonics of equal order in
(42) and (43) one finds that

W’") U) 8, f) = f"’" ) Pen(#) €08 () + €1 ). (44)

m 7)1.

Butu=1 When o = asand B = f,; further 03,.(1) = B,(1) = 1, while pt(1) = 0
for all non-zero m. Therefore

2n
EO YU S5, Bo) = fENU). (45)
m=
It follows from (36) and (38) that
2n
U) = fid(U) = 2_]0 YE(U) 8GD (0, fo)- (46)
On defining Py — f ® e (U) U2dU,
0
2n
one deduces that H,, = 3 ¥ ST (g, Bo)s (47)
=0
and from (41) that "
© 2n
L0)=—-2+ % 3 3,080 (g, B)- (48)
n=1 m=0

Now the average value of any spherical harmonic, of order one or larger, over a
sphere is zero. Therefore, if the double sum in (48) must not become negative for
any value of (o, f,), then it must vanish for all («,, £,). Further, none of the i,
coefficients in (48) vanishes. Therefore it follows that all the ¥'{™’s vanish, for
n = 1. We return to (42) and see that this implies that

f CUH(U, 0, f)AU = ¥, (49)
0

independent of « and £. This integral is proportional to the number of particles
in the undisturbed plasma moving into a unit solid angle around the direction
(¢, B). Thus, ¢n order that I,(0) > — 2 for all directions of the wave-vector we require
that the number of particles in the plasma moving into any given solid angle shall be
independent of direction. In fact, when this is the case, [,(0) = — 2 for all directions
of the wave-normal, and it can easily be shown that I, = I, = —1and [, =

Thus the velocity distribution in the plasma must satisfy some rather stringent
conditions if instability is to be avoided. In fact the requirement can be made still
stronger, for (33) states that

St Fow < Lo+ Ly

with equality only if I, = I, = 0. Now, at best, the right-hand side equals — 2 for
all directions of the wave-normal. Therefore I, and I, must vanish for all wave-
normals in order that ., 4.2 . shall never be smaller than —2 and that no
instability shall oceur. Both I, and I, are pure imaginary at 4 = 0, so that

I, = ﬂiff?)(—ai) dvdw (50)

27
- —m ) UcosedU dep, (51)
a0 =37
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expressed in polar co-ordinates. Similarly,

2m
= mf f ) Using dU deg. (52)
w 80 o=4n

Both expressions must vanish for all directions of the wave-normal. It is shown
in appendix 2 that this means that the distribution function must also be such that

f: Uf (U, f)dU = &, (53)

independent of « and £.

The argument shows that no disturbance with a real, non-zero wave-number
and zero phase velocity will exist in a plasma whose velocity distribution function
satisfies conditions (49) and (53). We go on to prove that in such cases no distur-
bance with a real wave-number can exist with an imaginary phase velocity a = 7
where 7 is small. To establish this consider the values of .%,, £, and £, at
a = in. We have that

'j{m(“?) = fvv(o) +“7(a"¢;v/a77)0a (54‘)
approximately, that
- (3 G- ()
Y e P e e L= (55)
(an o \Mm/)o \onhiJo \on/e
since Z,(0) = 0; and if I, = J,,, +¢K,,, expressed in real and imaginary parts, then
ol (o)== (%)
v) (S} o () (56)
(377 0 M /o ou /o

But K, (u) = i fm vzgldvdw,

and so ( )O ff_wvz( )dvdw (57)

In terms of spherical polars, with ¢ = 0 parallel to the positive u-axis,
(Z) = Llei
dut)u_o U062 U’
21 3 of -
thus ( ) f f (U2802 UGU)U cos®odUdo

f fzn(aez )fU cos?edU de. (58)

It now easily follows that, if a distribution function satisfies condition (53), then
only its isotropic part makes any contribution to the integral in (58). Hence, in
such cases,

oK @ o, oK
hENCCR T 2 wl _ v
( F )0 = 271 fo JUAU <0, and ( P )0 (—au )0 > 0.

Thus both £ (i5) and £, (¢9) exceed —1. Further, it is readily proved that
£ (i) = 0 now. The equation for A becomes simply

[At M Syt ) T = 0. (59)
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Since £, (19) + .Z,,,(in) > — 2, the value of A corresponding to a = iz is less than
unity, and the corresponding wave number is not real. Thus no unstable solutions
exist near the zero phase velocity in this case.

5. Conclusion

It has been shown that unstable transverse waves can occur in plasmas with a
wide variety of velocity distribution functions. When these functions have
central symmetry an instability will certainly arise unless conditions (49) and
(53) hold, that is unless the number of particles moving into a solid angle of given
size and their harmonic mean velocity are independent of direction. If these condi-
tions hold this does not mean, strictly speaking, that the velocity distribution has
to be isotropic; to ensure isotropy would require that all integrals

F, =F UnfdU (n=0,1,2,3,...)
0

shall have values independent of orientation. In particular, it is not required by
conditions (49) and (53) that there shall be pressure isotropy; a condition on the
integral ¥, would be needed to make a statement about the pressure. But in
practice a plasma would need to be specially prepared if its velocity distribution
were to satisfy (49) and (53) and it were yet anisotropic; this can hardly be
expected of the distributions likely to be met with in a practical problem.

Two important questions are not resolved by our discussion. We cannot say
that a plasma will definitely be stable if its distribution function satisfies (49)
and (53) since we have not considered what values of k? correspond to phase
velocities congiderably different from zero. Further, it has not been possible to
obtain any results for velocity distributions without central symmetry. The
author believes, but has been unable to prove, that all such distributions are
unstable.

In a paper to follow some typical unstable velocity distributions are considered
which might arise in plausible physical situations, and the development of the
instability is sketched.
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Appendix 1: General properties of the I-functions
We define I(a) = f EEACES (A.1.1)

foU—a

and show first that I(a) is analytic in the upper half-plane. Since the zero velocity
can be fixed arbitrarily, we consider only a point @ = ¢% on the imaginary axis.

Now o .
I(in) =f_w§_(’27 du = f » (u”_(’::z?)zdu, (A.1.2)

after integration by parts, since g( + co) == 0. Further, for all physically admissible
functions

jw lgu)| du = M, say, < oo,
and so ()| < My (A.1.3)

Thus I can have no singularities in the upper half-plane. Further,

” ®_gw)
I'(in) f o _“7)3 (A.1.4)
and so on, and therefore all derivatives of I are bounded in the upper half-plane.
Thus I is an analytic function in the upper half-plane.

Next, consider the behaviour of I as a tends to a point on the real axis, and
again, without loss of generality, one can take this to be the point ¢ = 0.

Then we write

I(iy) = L+1,
v
where L _f ’ j g'(%) =2 du, (A.1.5)
V=1
v
and L= j EACP (A. 1.6)
7%=
Now as 9y ~ 0, L—->2 N &uu)du = Jy, say, (A.1.7)
and this term is real. I, can be evaluated if g(u) is sufficiently smooth near = 0,
"0 that 7') = ¢'(0) +ug"(0) + O(2) (A.18)
v ! 1/v/
for then f ! g(—o.)-du = g’(O)j ! —@——nng (0) (A.1.9)
U—1y vy ¥

as 7 — 0, while

NS au=g o[ awrin[” 2] —googn @110
—v7

- “7 -V u—1
and tends to zero as 4 — 0. Finally,
Vi o) o /
[ e < o)

and tends to zero with 7. Hence
I(0) = J(0)+<K(0 .@j )du+mg (0). (A.1.11)
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Appendix 2: Some series expansions for /-functions
To evaluate

0)=2ﬂf:fil[ 2)U +0= - )22"] U2dUdp, (A 2.1)

an expression obtained in formula (37), we note that k(oo,x) = 0 for all 4, and
we find that

o 1
ff (1- 2)U3—dUd ff Uh(l— @) dUdp,  (A.2.2)
0 J-1
after integration by parts. Therefore
© 1 oh
1,00) = 2 Uzdu 1—pu?) d A.23
“0) ﬂfo f—l( ”[/Aaﬂ ]” (429
On expanding WU, ) = thnw) Bp),

and with the definition f Uzh,, (U)dU = H,

2n?

we find that [,(0) = 27r Y‘ f [ mll P, - 31’2n] dp. (A.2.4)

The integral equals —4 when n = 0. We now evaluate it for other values of n.
With the help of the well-known recurrence formula

(1 '—/u’)ZP'l,z = n(Pn—l—lu‘Pn)’

. ! V—p?_,
we find that i, = (1-~p?) r P, —3F,,idu
-1

1
=f Qn(/% —,uJ) By 1 —(204+3) (1 - p2) B, dp. (A.2.5)
-1
1
Next [ #Psip=§ when n=1,
B =0 when n>1,

1 2 11
and f Pgn(l—,uz)d,u=§f B,(1-P)dp=—~#% when n=1,
-1 -1
=0 when 2 > 1.

1
Finally to evaluate f 22—";%(@ dp
-1

we use the recurrence formula

n+1) P, —(2n+1)uP,+nP,_, =0,

so that (2n—1) Py, 4/pt = (4n—~3) P, s~ (2n—2) P, _,/u
PZn—-l _4n-3 2n—2 " P2n~3
and f =5n lf P, .du— om0 ,u 22 du. (A.2.6)

Forn =1, f Fong gy = 2, (A.2.7)
-1 M
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and therefore for larger values of n

1 Py L (2n—2)...2
f_l"}Tldﬂz( o 1222—1; 37
[ —1) 122201

= U G Ty

On collecting terms we find that

and forn > 2
22np[(n— 1) 172 3 w_t 22n+1(p 1)2

=T e = T gy

129

Thus 1,(0) = —87Hy+ 27 ¥ i, H,,.
n=1

Next consider the integrals I,(0) and Z,(0). In polar co-ordinates,

L) = — 'fw 2"(af) U cosodl d
L(0) = —m f 8—65,, cos P

2n
—mff ( )UCOSquUdrp

Once againlet  f= § s JENU) PF( 1) €08 (mp + €4, ).

n=0 m=0

The integration picks out the component with m = 1, and
1(0) = m¥% 2 ( p;") cos €, "f Ufhdu;

similarly 1,(0)= —n% Z ( (Z;;n) sine; n.[ UfRdUu.

n=0
As before, we compare the two series expressions

2

3

Ms

f(u) = SE(U) po (1) cos (me + €, )

0

P (U) S5 (e, ).

0

]
I

n=0m

0

Ms
ﬁM§

n

(A.2.8)

(A.2.9)

(A.2.10)

(A.2.11)

(A.2.12)

(A.2.13)

(A.2.14)

(A. 2.15)

Now consider a particular wave-normal n, through @ = o5and # = §,, and let the
azimuthal angle ¢ be measured from the plane which contains n and the funda-

mental initial line. Then, near o = &, § = 3,
0 0
% = 50 taken along ¢ = 0,
1 ¢

s_in—ocgﬁ = 55, taken along P = 77/2.
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From now on we use cos  as the argument of the Legendre functions. Equating
harmonics of equal order in (A. 2.15),

f‘"‘) ) PEL(cos B) cos me cos €y,
m= 0

- E (U pig(cos B) sinmesine,, ,, = E z/f(m’ (U) S5 (o, B). (A.2.18)

Hence, near « = a, § = S,

oSy d

) 2n (1) P2n

mzol/f (U)( do )% = fai( ( d@) COS €y, n (A.2.17)
() (08T, @ dpi,\ .

e 2o sing (8/)’ ) b 2"(U)( a0 )Os‘nel’w (A.21.8)

since derivatives of the Legendre functions p}, vanish at § = 0 when m + 1.
Thus Z,(0) and I,(0) are expressible, respectively, as infinite series, in terms of

Egm(2ST. /o)., 5, and EL(OSE08)y, 4, Where B = f B UyimdU. In fact,
(AP3alB) y oG
I, il \ID2n| M) p=d mmygm = 97 oy A.2.19
aango m23 (dpzn/de)eso § 2 oo Y ( )
1 8@
and v = Snadf”

Thus, if 7, and 7, are required to vanish for all values of « and #, then G is the
sum of an infinite series, in spherical harmonics, whose first derivatives vanish
everywhere on the sphere. Hence all the E{; vanish and so

f‘” UF(U, @, B)dU
0

is independent of « and B in this case, as earlier stated.



